
www.manaraa.com

I.J. Information Technology and Computer Science, 2014, 06, 40-46
Published Online May 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.06.06

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 06, 40-46

Enhanced Dynamic Algorithm of Genome

Sequence Alignments

Arabi E. keshk
Dept. of Computer Science, Faculty of Computers and Information, Menoufia University, Egypt

Email: arabikeshk@yahoo.com

Abstract—The merging of biology and computer science has

created a new field called computational biology that explore

the capacities of computers to gain knowledge from biological

data, bioinformatics. Computational biology is rooted in life

sciences as well as computers, information sciences, and

technologies. The main problem in computational biology is

sequence alignment that is a way of arranging the sequences of

DNA, RNA or protein to identify the region of similarity and

relationship between sequences. This paper introduces an

enhancement of dynamic algorithm of genome sequence

alignment, which called EDAGSA. It is filling the three main

diagonals without filling the entire matrix by the unused data. It

gets the optimal solution with decreasing the execution time and

therefore the performance is increased. To illustrate the

effectiveness of optimizing the performance of the proposed

algorithm, it is compared with the traditional methods such as

Needleman-Wunsch, Smith-Waterman and longest common

subsequence algorithms. Also, database is implemented for

using the algorithm in multi-sequence alignments for searching

the optimal sequence that matches the given sequence.

Index Terms—Bioinformatics, Dynamic programming,

Sequence alignment, Algorithms.

I. INTRODUCTION

In bioinformatics, a sequence alignment is a way of

arranging the primary sequences of Deoxyribonucleic

acid (DNA) such as expressed sequence tags, Ribonucleic

acid (RNA), or protein to identify regions of similarity.

This similarity may be a consequence of functional,

structural, or evolutionary relationships between the

sequences. This field includes components of

mathematics, biology, chemistry, and computer science.

Bioinformatics means the analysis of biological

information using computers and statistical techniques,

Bioinformatics is the tools for analysis of Biological Data

as shown in Figure 1 [1].

Aligning two long DNA sequences requires a long

time on a single processor and a very large memory

capacity [2]. Aligned sequences of nucleotides or amino

acids residues are typically represented as rows within a

matrix. Gaps are inserted between the residues so that

identical or similar characters are aligned in successive

columns [3]. There is a lot of sequence alignment

algorithms such as dynamic algorithms and heuristic

algorithms. Dynamic algorithm includes many algorithms

for example Needleman-Wunsch and Smith-Waterman

[3]. The heuristic algorithm includes Basic Local

Alignment Search Tools (BLAST) and FASTA.

Sequence is an ordered list of objects or events like a set,

it contains members that called elements or terms, and the

number of terms is called the length of the sequence [4].

Computational biology involves the development and

application of data-analytical and theoretical methods,

mathematical modeling and computational simulation

techniques to the study of biological, behavioral, and

social systems [5]. The problem in sequence alignment is

the execution time is very high and a modified algorithm

is introduced to minimize that time. So the execution

time becomes lower and the efficiency is high. There are

two approaches to make the sequence alignments as

explained in the following.

Fig. 1. Bioinformatics basics

A. Global Alignment

Global alignment assumes that the two proteins are

basically similar over the entire length of one another.

The alignment attempts to match them to each other from

end to end, even though parts of the alignment are not

very convincing [6], [7].

B. Local Alignment

Local alignment searches for segments of the two

sequences that match well. There is no attempt to force

entire sequences into an alignment, just those parts that

appear to have good similarity, according to some

criterion are considered. Using the same sequences as

above, Local alignment becomes as follow:

mailto:arabikeshk@yahoo.com
http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Element_%28mathematics%29

www.manaraa.com

 Enhanced Dynamic Algorithm of Genome Sequence Alignments 41

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 06, 40-46

Most commonly used algorithm for local alignment is

Smith-Waterman algorithm global alignment, which is

the best as it gets a maximum match between the

sequences. These two types of alignment are used to

make a comparison between genetic sequences like

Expressed Sequence Tags (ESTs). ESTs are small pieces

of DNA sequence (usually 200 to 500 nucleotides long)

that are generated by sequencing either one or both ends

of an expressed gene. They are short DNA molecules

reverse-transcribed from a cellular mRNA population [8],

[9].

The organization of the remaining paper is as follows:

Section 2 presents an overview about bioinformatics

algorithms in the previous works. Section 3 presents the

proposed algorithm. Section 4 presents the experimental

results. Finally, the conclusion is illustrated in section 5.

II. RELATED WORK

The short or similar sequences can be aligned by using

the hand. However, most interesting problems require

the alignment of sequence length. The Pair-wise

algorithm used to compare the two sequences. The

following example illustrates an alignment between the

sequences A=.ACAAGACAGCGT and

B=.AGAACAAGGCGT [3].

Fig. 2. Alignment of two sequences

The objective is to match identical subsequences as far

as possible. In the example, nine matches are highlighted

with vertical bars. However, if the sequences are not

identical, mismatches are likely to occur as different

letters are aligned together. Two mismatches can be

identified as shown in the example: a C of A aligned with

a G of B, and a G of A aligned with a C of B. The

insertion of spaces produced gaps in the sequences. They

were important to allow a good alignment between the

last three characters of both sequences. An alignment can

be seen as a way of transforming one sequence into the

other. From this point of view, a mismatch is regarded as

a substitution of characters. A gap in the first sequence is

considered an insertion of a character from the second

sequence into the first one, whereas a gap in the second

sequence is considered a deletion of a character of the

first sequence. In the previous example, A can be

converted into B in four steps:

1) Substitute the first C for a G;

2) Substitute the first G for a C;

3) Delete the second C; and

4) Insert a G before the last three characters.

Once the alignment is produced, a score can be

assigned to each pair of aligned letters, which called

aligned pair according to a chosen scoring scheme. We

usually reward matches and penalize mismatches and

gaps. The overall score of the alignment can then be

computed by adding up the score of each pair of letters.

For instance, using a scoring scheme that gives a +1

value to matches and −1 to mismatches and gaps, the

alignment of Figure 2 score equals 9 * (1) + 2 * (−1) + 2

* (−1) = 5. The similarity of two sequences can be

defined as the best score among all possible alignments

between them. Note that it depends on the choice of

scoring scheme. Next section introduces the multiple

algorithms that used for this comparison.

Actually all the previous works of dynamic sequences

alignments depend on Needleman-Wunsch, Smith–

Waterman, and longest common subsequence algorithms,

and the contributions of these works falls on how to

speed up and reduced the memory space that used in

these algorithms. In [2] is developed a parallel solution

to achieve the optimum alignment with relatively good

performance. The shared memory parallel architecture is

the focus of this work therefore; it have considered off-

the-shelf systems like multi-core CPUs as well as

advanced shared memory platforms.

The work in [4] is proposed a solution that utilizes both

shared and distributed memory architectures via cloud

technology to enhance the performance of evaluating the

statistical significance for pair of DNA sequences.

Therefore, the restriction on the sequence sizes is released

to be in megabyte-scale, which was not supported before

for the statistical significance problem.

A Needleman-Wunsch Algorithm

The standard global alignment algorithm is referred to

as Needleman-Wunsch algorithm [10]. This algorithm

computes the similarity between the two sequences A and

B of lengths m and n, respectively, using a dynamic

programming approach. Dynamic programming is a

strategy of building a solution gradually using simple

recurrences [7]. The key observation for the alignment

problem is that the similarity between sequences A[1..m]

and B[1..n] can be computed by taking the maximum of

the three following values:

• The similarity of A [1……m −1] and B [1…….n −1]

plus the score of substituting A[m] for B[n];

• The similarity of A [1……m −1] and B [1……n] plus

the score of deleting aligning A[m];

• The similarity of A [1……m] and B [1……n −1] plus

the score of inserting B[n].

From this observation, the following recurrence can be

derived by:

sim (A[1..i], B[1..j]) = max { sim (A[1..i −1], B[1..j

−1]) + sub (A[i], B[j]); sim (A[1..i −1], B[1..j]) + del

(A[i]); sim (A[1..i], B[1..j −1]) + ins (B[j])} (1)

Where sim (A, B) is a function that gives the similarity

of two sequences A and B, and sub (a, b), del (c) and ins

(c) are scoring functions that give the score of a

substitution of character a for character b. where del (c)

and ins (c) are deletion of character c, and an insertion of

www.manaraa.com

42 Enhanced Dynamic Algorithm of Genome Sequence Alignments

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 06, 40-46

character c, respectively. This recurrence is complete

with the following case:

sim (A[0], B[0]) = 0; where A[0] and B[0] are

defined as empty strings. To solve the problem with this

recurrence, the algorithm build an (m +1) × (n +1) matrix

M where each M [i, j] represents the similarity between

sequences A [1....i] and B [1….j] as shown in Figure 3.

The first row and the first column represent alignments of

one sequence with spaces. M [0, 0] represents the

alignment of two empty strings, and is set to zero. All

other entries are computed with the following formula:

M [i, j] = max {M [i -1, j -1] + sub (A[i], B[j]);

M [i -1, j] + del (A[i]); M [i, j -1] + ins (B[j])} (2)

The matrix can be computed either row by row from

left to right or column by column (from top to bottom. In

the end, M [m, n] will contain the similarity score of the

two sequences. Since there are (m+1)*(n+1) positions to

compute and each one take a constant amount of work.

This algorithm has time complexity of O (n2). Clearly, it

has also quadratic space complexity since it needs to keep

the entire matrix in memory.

Fig. 3. Dynamic programming matrix for the global alignment

Figure 3 shows the standard dynamic programming

matrix for the global alignment of sequence

A=ACAAGACAGCGT and B=AGAACAAGGCGT

with paths to retrieve optimal alignments indicated with

arrows. Once the matrix has been computed, the actual

alignment can be retrieved by tracing a path in the matrix

from the last position to the first. The trace is a simple

procedure that compares the value at each M [i, j] to the

values of its left, top and diagonal entries according to the

formula that given above. For instance, if M [i, j] = M [i,

j −1] + ins (B[j]), the trace reports an insertion of

character B[j] and proceeds to entry M[i, j −1].

Alternatively, pointers can be saved on each entry during

the computation of the matrix so that this evaluation step

can be avoided at the cost of more memory usage. Since

the path can be as long as O (m + n), this procedure has

linear time complexity. Note that sometimes more than

one path can be traversed and as a result multiple high-

scoring alignments can be produced. In the matrix of

Figure 3, two optimal alignments can be retrieved as

shown in Figure 2 and Figure 4.

Fig. 4. Optimal alignment retrievable from the matrix of Fig.3

It is often useful to see the dynamic programming

solution for the sequence alignment problem as a directed

weighted graph with (n +1) × (m +1) nodes representing

each entry (i, j) of the matrix, and having the following

edges:

 ((i −1, j −1), (i, j)) with weight equals to sub (A[i],

B[j]);

 ((i −1, j), (i, j)) with weight equals to del (A[i]);

 ((i, j −1), (i, j)) with weight equals to ins (B[j]);

A path from node (0, 0) to (n, m) in the alignment

graph corresponds to an alignment between the two

sequences, and the problem of retrieving an optimal

alignment is converted to the problem of finding a path in

the graph with highest weight.

B. Smith-waterman algorithm:

The Smith–Waterman algorithm compares segments of

all possible lengths and optimizes the similarity measure.

It has the desirable to find the optimal local alignment

with respect to the scoring system. The main difference

between Smith-Waterman and Needleman is adding the

possibility of zero value to the main function of

Needleman algorithm [11],[12]. The formula for

computing M (i, j) in (2) becomes:

M (i, j) = MAX{ 0;M (i-1, j-1) + sub (A(i), B(j));

M(i-1,j) + del(A(i)); M(i,j-1) +ins (B(j))}

Initialization:

Gap=0, Match=+1, Mismatch=-1,

Assume the sequence A=GCCCTAGCG, and B

= GCGCCAATG. Figure 4 shows the optimal local

alignment that get from running the smith-

waterman code as follows:

- A = GCCCTAGCG

 GCG

- B = GCGCCAATG

The score of smith alignment=(3*1)+(0*-1)+(0*0) =3

C. longest common subsequence problem:

The longest common subsequence (LCS) problem is

the third application of dynamic programming and used

to find the longest common subsequence to all sequences

in a set of sequences [13]. It is considered to fill in a cell

the three values V1, V2, and V3 that shown as follows:

-V1 = the value in the cell to the left

-V2 = the value in the cell above

-V3 = the value in the cell to the above-left

The main function in the LCS strategy: Max = {V1, V2,

V3+1} if C1 equals C2, V3 if C1 is not equal to C2,

www.manaraa.com

 Enhanced Dynamic Algorithm of Genome Sequence Alignments 43

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 06, 40-46

where C1 is the character above the current cell and C2 is

the character to the left of the current cell.

Termination: It is adding arrows that point pack to get

the value for the current cell and these arrows are used in

the tracing back.

Tracing back to find an actual LCS:

In the tracing back step it uses the cell pointers that we

draw. When you have a pointer to the above-left cell, the

value in the current cell is equal 1 and it is more than the

value of the above-left cell. This means that the

characters to the left and above are equal (match) else the

characters are not equal (mismatch) or gaps as shown in

Figure 4.

Fig. 4. Shows the best matches in LCS matrix with trace back and

matches [13].

From the trace back:

It is found the score of LCS alignment = 5.

Performance: time Complexity is O (M*N) as it is

need to fill all the cells in the matrix, and time of backing

trace is (M+N).

III. THE PROPOSED ALGORITHM

The proposed algorithm is a modified of global

dynamic algorithm, where it is depend on filling the three

main diagonals without filling the entire matrix by the

unused data as shown above in the pervious work section.

To explain the modified algorithm by given two

sequences A and B, and create a matrix M×N where M is

the length of first sequence, N the length of second

sequence. Every non-decreasing path from (0, 0) to (M, N)

corresponds to a global alignment of the two sequences.

There are five main steps for the EDAGSA algorithm as

follow:

Step1: Initialization

Gap= -1

Match= +1

Mismatch= -1

C (0, 0) = 0

C (0, 1) = C (0, 0) + Gap

C (j, 0) = C (0, 0) + Gap

Step2: Detect the three main diagonals in the matrix.

Step 3: Main Iteration

For each cell in the three main diagonals:

For each i = 1 . . . M

For each j = 1 . . . N

if (i = j)

C (i, j) = (C (i − 1, j − 1) + match)

Dir (i, j) = (DIAG)

if (i ≠ j)

C (i, j) = max

{C (i − 1, j − 1) + mismatch, case 1

C (i − 1, j) + gap, case2

C (i, j − 1) + gap, case3}

Hint: the three values in the maximum function needn’t

be found it must be at least one value.

dir (i, j) =

{DIAG, if case 1

LEFT, if case 2

UP, if case 3}

Step 4: Termination

C (M, N) is the optimal score, and from dir (M, N), we

can trace back the optimal alignment.

Step 5: Performance

Time: O (3M + 1) if the 2 sequence have same length

or O (3M + 2) if the 2 sequence have different length.

Space: O (3M + 1) if the 2 sequence have same length

or O (3M + 2) if the 2 sequence have different length.

A. EDAGSA Case Study

Given two sequences A=―ACAAGACAGCGT‖ and

B=―AGAACAAGGCGT‖

Create a matrix of size M*N. The main steps of

EDAGSA algorithm is as follow:-

Step1: Initialization

Gap=-1

Match=+1

Mismatch=-1

dir = the direction of the trace back for optimal

alignment.

C(0, 0) = 0

C(0, 1) = C(0,0)+Gap

 = -1

F(j, 0) = C(0,0) +Gap

 = -1

Step2: Detect the three main diagonals in the matrix.

Step3: Main Iteration

Calculate the values for each cell in the three main

diagonals as shown in Table1:

C[1,1]=C[0,0]+match=0+1=1 (i=j)

dir = diagonal

C[1,2]= max(C[0,1],C[1,1],C[0,2]) +mismatch (i≠j)

C[0,2] not have any value so

C[1,2]=max(C[0,1],C[1,1]) +mismatch

 = max(-1,1)+(-1)=1-1=0

dir = the maximum value = left

And so on for all the 3 diagonal values, the matrix will

be as follow as shown in table1.

Step4: Termination

C[M,N] is the optimal score

The optimal score is 5 and trace back the optimal

alignment from this optimal score position by the dir

www.manaraa.com

44 Enhanced Dynamic Algorithm of Genome Sequence Alignments

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 06, 40-46

value, thus the optimal alignment is shown below in the

bold characters.

 A G AA G A C A - GCGT

 A C AA C A - A G GCGT

The Score is equal (9)*1+ (2)*-1+(2)*-1= 9-2-2 = 5

Table 1. Fill 3 Diagonal Values and Trace Back Pointer

Step5: Performance

Time = O(3*M+1) = O(37) where M = 12 and space =

O(3*12+1) = O(37)

From the last matrix we found that EDAGSA

algorithm find the same optimal solution as dynamic

programming matrix for the global alignment. Also it can

be used for the longest common subsequence algorithm.

EDAGSA ignored the most unused data of the matrix,

and therefore it reduces the execution time for the

alignment and increase the performance.

IV. EXPERIMENTAL RESULT

To verify EDAGSA algorithm the experimental results

are done for the comparison between EDAGSA and the

traditional algorithms such as fast longest common

subsequences LCS, Needleman-Wunsch Algorithm, and

Smith-Waterman when the sequences is A=

GCCCTAGCG and B= GCCCAATG.. It is found the

execution time for the alignment by using Needleman-

Wunsch algorithm is = 0.7929783 msec, and it =

0.5368433 msec by the Smith-Waterman algorithm, and

longest common subsequences algorithm is =0.4060487

msec, and finally = 0.2605421 msec by EDAGSA

algorithm.. From these values we found that our

algorithms EDAGSA achieve the least execution time

and this come from ignoring the unused data of the

matrix and evaluate the only three main diagonals.

The four dynamic algorithms are applied on the two

types of human insulin such as EST'S sequence1 with

accession number: C07137.1 and EST'S sequence2 with

accession number: C07145.1 with length 231, then it

found the total execution time for the alignment by using

Needleman-Wunsch algorithm is 4.4839166 millisecond,

and it = 4.3071470 millisecond by the Smith-Waterman

algorithm, and Longest Common Subsequences

algorithm is = 3.0585219 millisecond, and finally=

2.2647422 millisecond by EDAGSA algorithm. Also,

from these values we found that our algorithms EDAGSA

achieve the least execution time.

For multi-sequences alignments the previous work in

the bioinformatics algorithms depend on making a

comparison in files and this take more time. Also this

work suggests for multi-sequences alignments to make

the comparison in a database rather than on files, which

will speed the execution time of the comparison.

The GUI interface for the proposed algorithm is

introduced in Figure 5. In Figure 6 the frame that

compare the input sequence with the sequences in data

base to identify which one in the data base is mot similar,

then the best score is returned and the sequence in the

data base that achieve most score as shown in Figure 7.

In data base we set a DNA sequences to make

comparison between them to identify the big similarity

between them.

www.manaraa.com

 Enhanced Dynamic Algorithm of Genome Sequence Alignments 45

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 06, 40-46

Fig. 5. The GUI of Two Sequence Alignment

Fig. 6. The alignment of the sequences

Fig. 7. The Best Score

www.manaraa.com

46 Enhanced Dynamic Algorithm of Genome Sequence Alignments

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 06, 40-46

V. CONCLUSIONS

In this paper, a modification of the global dynamic

algorithm called EDAGSA is proposed. This

modification depends on ignoring the unused data of the

comparison matrix and evaluates the only three main

diagonals of that matrix. The main idea of this

modification is reducing the execution time, increasing

the performance and decreasing the memory location that

used to make the sequence comparisons. This algorithm

is based on taking the advantage of dynamic algorithms

that is getting the optimal solution for the sequences

alignment. It also takes the advantage of the heuristic

algorithm that it is decreasing the execution time for the

sequence comparison. The complexity for both time and

memory equals 3m+1 compared with m*n for the

previous works. Also, for multi-sequences alignments the

modified algorithm simply used the database to make

comparison on it rather than files, thus we can do many

comparisons in few milliseconds.

ACKNOWLEDGMENTS

I would like to thank my students Sara Shhab and

Lameaa Fathi, for their helping in doing the experimental

results of this paper.

REFERENCES

[1] Bioinformatics,

Wikipedia:http://en.wikipedia.org/wiki/Bioinformatics.

[2] Ahmad M. Hosny, Howida A. Shedeed, Ashraf S. Hussein,

Mohamed F. Tolba, ―An Efficient Solution for Aligning

Huge DNA Sequences‖, 2011 IEEE International

Conference on Computer Engineering and Systems,

ICCES’2011, Cairo, Egypt, pp 295-299.

[3] Arthur M. Lesk, Introduction to Bioinformatics 2008.

[4] Hosny, Ahmad M.; Shedeed, Howida A.; Hussein, Ashraf

S.; Tolba, Mohamed F. Cloud statistical significance

estimation for optimal local alignment of huge DNA

sequences, INFOS' 2012, cc-48-54.

[5] Computational biology, Wikipedia:

http://en.wikipedia.org/wiki/Computational_Biology.

[6] TahirNaveed, ImitazSaeedSiddiqui, Shaftab Ahmed.

Parallel Needleman-Wunsch Algorithm for Grid.

Proceedings of the PAK-US International Symposium on

High Capacity Optical Networks and Enabling

Technologies (HONET 2005), Islamabad, Pakistan, Dec 19

- 21, 2005.

[7] BioInformatics Educational Resources Documentation

[online], European Bioinformatics Institute United

Kingdom. Available:

http://www.ebi.ac.uk/2can/tutorials/protein/align.html.

[8] MacIntosh, G.C., Wilkerson, C., Green, P.J. (2001).

Identification and analysis of analysis of Arabidopsis

expressed sequence tags characteristic of noncoding RNAs.

Plant Physiol. 127(3): 765-776.

[9] Lopez, C., Piegu, B., Cooke, R., Delseny, M., Tohme, J.,

Verdier, V. Using cDNA and genomic sequences as tools

to develop SNP strategies in cassava

(ManihotesculentaCrantz). Theor. Appl. Genet, 2005 110:

425-431. 47.

[10] Needleman, S. B. and C. D. Wunsch, A General Method

Applicable to Search for Similarities in the Amino Acid

Sequence of Two Proteins, Journal of Molecular

Biology,48:443-453, 1970.

[11] Cormen, T. H., C. E. Leiserson, R. L. Rivest and C. Stein,

Introduction to Algorithms, second edition, MIT Press,

2001.

[12] Smith, T. F. and M. S. Waterman, Identification of

common molecular sub-sequences, Journal of Molecula

Biology, 147:195-197, 1981.

[13] Bergroth, L., Hakonen, H. and Raita, T. "A Survey of

Longest Common Subsequence Algorithms". SPIRE

(IEEE Computer Society), 2000, 39–48.

Author’s Profiles

Arabi E. keshk received the B.Sc. in

Electronic Engineering and M.Sc. in

Computer Science and Engineering from

MenoufiaUniversity, Faculty of Electronic

Engineering in 1987 and 1995, respectively

and received his PhD in Electronic

Engineering from Osaka University, Japan

in 2001. His research interest includes

software testing, software engineering, distributed system,

database, data mining, and bioinformatics.

http://en.wikipedia.org/wiki/Bioinformatics
http://www.deepdyve.com/search?author=Hosny%2C+Ahmad+M.
http://www.deepdyve.com/search?author=Shedeed%2C+Howida+A.
http://www.deepdyve.com/search?author=Hussein%2C+Ashraf+S.
http://www.deepdyve.com/search?author=Hussein%2C+Ashraf+S.
http://www.deepdyve.com/search?author=Tolba%2C+Mohamed+F.
http://en.wikipedia.org/wiki/Computational_Biology
http://www.cloudbus.org/%7Ealchemi/files/Parallel%20Needleman%20Algo.pdf
http://www.ebi.ac.uk/2can/tutorials/protein/align.html

